Abstract

We apply to the semantics of Arithmetic the idea of ``finite approximation'' used to provide computational interpretations of Herbrand's Theorem, and we interpret classical proofs as constructive proofs (with constructive rules for $\vee, \exists$) over a suitable structure $\StructureN$ for the language of natural numbers and maps of G\"odel's system $\SystemT$. We introduce a new Realizability semantics we call ``Interactive learning-based Realizability'', for Heyting Arithmetic plus $\EM_1$ (Excluded middle axiom restricted to $\Sigma^0_1$ formulas). Individuals of $\StructureN$ evolve with time, and realizers may ``interact'' with them, by influencing their evolution. We build our semantics over Avigad's fixed point result, but the same semantics may be defined over different constructive interpretations of classical arithmetic (Berardi and de' Liguoro use continuations). Our notion of realizability extends intuitionistic realizability and differs from it only in the atomic case: we interpret atomic realizers as ``learning agents''.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.