Abstract

The advent of humanoid robots has enabled a new approach to investigating the acquisition of language, and we report on the development of robots able to acquire rudimentary linguistic skills. Our work focuses on early stages analogous to some characteristics of a human child of about 6 to 14 months, the transition from babbling to first word forms. We investigate one mechanism among many that may contribute to this process, a key factor being the sensitivity of learners to the statistical distribution of linguistic elements. As well as being necessary for learning word meanings, the acquisition of anchor word forms facilitates the segmentation of an acoustic stream through other mechanisms. In our experiments some salient one-syllable word forms are learnt by a humanoid robot in real-time interactions with naive participants. Words emerge from random syllabic babble through a learning process based on a dialogue between the robot and the human participant, whose speech is perceived by the robot as a stream of phonemes. Numerous ways of representing the speech as syllabic segments are possible. Furthermore, the pronunciation of many words in spontaneous speech is variable. However, in line with research elsewhere, we observe that salient content words are more likely than function words to have consistent canonical representations; thus their relative frequency increases, as does their influence on the learner. Variable pronunciation may contribute to early word form acquisition. The importance of contingent interaction in real-time between teacher and learner is reflected by a reinforcement process, with variable success. The examination of individual cases may be more informative than group results. Nevertheless, word forms are usually produced by the robot after a few minutes of dialogue, employing a simple, real-time, frequency dependent mechanism. This work shows the potential of human-robot interaction systems in studies of the dynamics of early language acquisition.

Highlights

  • The advent of humanoid robots has enabled a new approach to investigating the acquisition of language, and in this article we report on the development of robots able to acquire linguistic skills

  • Our work focuses on early stages analogous to some characteristics of a human child of about 6 to 14 months, the transition from babbling to first word forms, a critical stage in the development of linguistic skills [1]

  • We investigate one mechanism among many that may contribute to the acquisition of word forms, a key factor being the sensitivity of the learner to the statistical distribution of linguistic elements

Read more

Summary

Introduction

The advent of humanoid robots has enabled a new approach to investigating the acquisition of language, and in this article we report on the development of robots able to acquire linguistic skills. Our work focuses on early stages analogous to some characteristics of a human child of about 6 to 14 months, the transition from babbling to first word forms, a critical stage in the development of linguistic skills [1]. As well as being necessary for learning word meanings, the acquisition of anchor word forms facilitates the segmentation of an acoustic stream through other mechanisms. We investigate one mechanism among many that may contribute to the acquisition of word forms, a key factor being the sensitivity of the learner to the statistical distribution of linguistic elements. We show how word forms can be acquired, assessing the extent to which our model presents a plausible analogy to human linguistic development, and how it diverges. An apparent problem with variable pronounciation may aid word form acquisition

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call