Abstract

In this paper, we propose a new approach to interactive image segmentation via kernel propagation (KP), called KP Cut. The key to success in interactive image segmentation is to preserve characteristics of the user׳s interactive input and maintain data-coherence effectively. To achieve this, we employ KP which is very effective in propagating the given supervised information into the entire data set. KP first learns a small-size seed-kernel matrix, and then propagates it into a large-size full-kernel matrix. It is based on a learned kernel, and thus can fit the given data better than a predefined kernel. Based on KP, we first generate a small-size seed-kernel matrix from the user׳s interactive input. Then, the seed-kernel matrix is propagated into the full-kernel matrix of the entire image. During the propagation, foreground objects are effectively segmented from background. Experimental results demonstrate that KP Cut effectively extracts foreground objects from background, and outperforms the state-of-the-art methods for interactive image segmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.