Abstract
This paper describes the design of a haptic system that allows the interactive modification of cutter orientation during five-axis finishing cuts with the aim of improving the surface finish quality and collision avoidance strategies. The system supports two haptic models that provide three degree of freedom (DOF) force feedback and 6DOF posture sensing. Details of five key functions of the system are given: (1) a rendering conversion that uses 3DOF (instead of five) force feedback haptic representation, (2) an efficient force feedback design that allows accurate results to be obtained from the user’s manipulation, (3) a fast collision detection scheme that achieves real-time feedback, (4) use of active haptic guidance to assist cutter-path generation, and (5) a design that supports both ball-end and flat-end tools with partial optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computing and Information Science in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.