Abstract

This article presents a new motion model deformable motion models for human motion modeling and synthesis. Our key idea is to apply statistical analysis techniques to a set of precaptured human motion data and construct a low-dimensional deformable motion model of the form x = M (α, γ), where the deformable parameters α and γ control the motion's geometric and timing variations, respectively. To generate a desired animation, we continuously adjust the deformable parameters' values to match various forms of user-specified constraints. Mathematically, we formulate the constraint-based motion synthesis problem in a Maximum A Posteriori (MAP) framework by estimating the most likely deformable parameters from the user's input. We demonstrate the power and flexibility of our approach by exploring two interactive and easy-to-use interfaces for human motion generation: direct manipulation interfaces and sketching interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.