Abstract

BackgroundLignin is a complex polymer which inhibits the enzymatic conversion of cellulose to glucose in lignocellulose biomass for biofuel production. Cellulase enzymes irreversibly bind to lignin, deactivating the enzyme and lowering the overall activity of the hydrolyzing reaction solution. Within this study, atomic force microscopy (AFM) is used to compare the adhesion forces between cellulase and lignin with the forces between cellulase and cellulose, and to study the moiety groups involved in binding of cellulase to lignin.ResultsTrichoderma reesei, ATCC 26921, a commercial cellulase system, was immobilized onto silicon wafers and used as a substrate to measure forces involved in cellulase non-productive binding to lignin. Attraction forces between cellulase and lignin, and between cellulase and cellulose were compared using kraft lignin- and hydroxypropyl cellulose-coated tips with the immobilized cellulase substrate. The measured adhesion forces between kraft lignin and cellulase were on average 45% higher than forces between hydroxypropyl cellulose and cellulase. Specialized AFM tips with hydrophobic, -OH, and -COOH chemical characteristics were used with immobilized cellulase to represent hydrophobic, H-bonding, and charge-charge interactions, respectively. Forces between hydrophobic tips and cellulase were on average 43% and 13% higher than forces between cellulase with tips exhibiting OH and COOH groups, respectively. A strong attractive force during the AFM tip approach to the immobilized cellulase was observed with the hydrophobic tip.ConclusionsThis work shows that there is a greater overall attraction between kraft lignin and cellulase than between hydroxypropyl cellulose and cellulase, which may have implications during the enzymatic reaction process. Furthermore, hydrophobic interactions appear to be the dominating attraction force in cellulase binding to lignin, while a number of other interactions may establish the irreversible binding.

Highlights

  • Lignin is a complex polymer which inhibits the enzymatic conversion of cellulose to glucose in lignocellulose biomass for biofuel production

  • Chemical inhibition of lignin during cellulose enzymatic hydrolysis Kraft lignin was added to the cellulose enzymatic hydrolysis reaction to demonstrate the chemical inhibition of lignin

  • Untreated lignocellulose substrate will contain a ratio of cellulose to lignin of approximately 2:1, whereas biomass undergoing a pretreatment aimed at removing lignin will generally increase the ratio to somewhere between 4:1 and 10:1, and biomass undergoing an acidic pretreatment to remove hemicellulose will decrease the cellulose to lignin ratio below 2:1

Read more

Summary

Introduction

Lignin is a complex polymer which inhibits the enzymatic conversion of cellulose to glucose in lignocellulose biomass for biofuel production. A pretreatment process is often employed prior to the enzymatic hydrolysis reaction to alter the physical and chemical structure of lignocellulose, to increase the cellulose to glucose conversion. Variation is seen within the composition, bonding types, and functional groups of lignin and is dependent upon the biomass species. This variation will attribute to the recalcitrant characteristic of lignin. In the enzymatic hydrolysis of the lignocellulose process, lignin will physically block cellulase enzymes, and adsorb them causing a process known as nonproductive binding [5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.