Abstract

This paper proposes a novel method of collision-free fixture and tool space design for five-axis grinding, considering tool movement, machine degrees of freedom, the machine envelope, inspection, and related features. The fixture space is designed in three steps. First, the fixture space is generated as the remaining space after cutting out the tooling space (i.e. the sweeping space of the grinding wheel along the profile of the machined features). In this way, the fixture space is naturally collision-free with respect to tool movement. Second, the fixture space is further modified based on the constraints imposed by the grinding machine centre, which include over-travel distance, the positions of coolant nozzle and wheel dresser, and so on. Third, the fixture space is modified again according to measurements conducted by coordinate measuring machines and in-cycle machine probes. Interactions of fixture space with tool space, machine, and inspection are considered. The fixture space design for holding aerofoil blades on a five-axis machining centre Makino A55 for grinding operations is used as a case study, and the results of this study have been verified by computer-aided manufacture (CAM) simulation software Vericut and physical experiments using dummy wheels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.