Abstract

Global amphibian declines have many corroborative causes, and the use of pesticides in agriculture is a likely contributor. In places with high pesticide usage, such as Costa Rica, agrochemical pesticides may interact with other factors to contribute to rapid species losses. Classical ecotoxicological studies rarely address the effects of a pesticide in combination with other stressors. The present study investigated the synergistic roles of 2 pesticides (chlorothalonil and endosulfan), predator stress, and environmental regimes (controlled laboratory environments versus ambient conditions) on the survival of red-eyed tree frog larvae (Agalychnis callidryas). No synergistic effects of pesticide mixtures or predator stress were found on the toxicity of either chlorothalonil or endosulfan. Both pesticides, however, were considerably more toxic under realistic ambient temperature regimes than in a climate-controlled laboratory. Overall, endosulfan displayed the highest toxicity to tadpoles, although chlorothalonil was also highly toxic. The median lethal concentration estimated to kill 50% of a tested population (LC50) for endosulfan treatments under ambient temperatures was less than one-half of that for laboratory treatments (3.26 µg/L and 8.39 µg/L, respectively). Studies commonly performed in stable temperature-controlled laboratories may significantly underestimate toxicity compared with more realistic environmental regimes. Furthermore, global climatic changes are leading to warmer and more variable climates and may increase impacts of pesticides on amphibians.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.