Abstract

Nicotine and alcohol are abused substances that are often used concurrently. Despite their combined usage, little is known about how they interact to produce changes in behavior and neural activity. Two experiments were conducted to identify interactions on both behavior and neural targets resulting from the co-administration of nicotine and alcohol. In Experiment 1, male C57BL/6J mice were administered saline, alcohol (2.4 g/kg, i.p.), nicotine (0.5 mg/kg, i.p.) or an alcohol/nicotine mixture and returned to their home cage. In Experiment 2, a higher dose of nicotine (1.0 mg/kg, i.p.) was included and animals were exposed to a novel environment. Several behavioral measures were analysed during novelty exposure. Immunohistochemical detection of inducible transcription factors (c-Fos and Egr1) was used in both experiments to identify changes in neural activation. Behavioral results suggested that the drugs were interacting in the production of behaviors. In particular, alcohol produced locomotor stimulation while it suppressed counts of rearing and leaning. When co-administered, nicotine appeared to counteract the alcohol-enhanced locomotor activity. Several brain regions were observed to have altered transcription factor expression in response to the different drug treatments, including amygdalar, hippocampal and cortical subregions. In a subset of these brain areas, nicotine and alcohol counteracted one another in the expression of transcription factors. These results identify several interactive target sites within the hippocampus, extended amygdala and cortical regions. The interactions appear to be a result of antagonizing actions of nicotine and alcohol. Finally, the results suggest that the combined use of nicotine and alcohol may offset the effects of the drug administered independently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.