Abstract

Given the lack of knowledge regarding climate change-chemical exposure interactions, it is vital to evaluate how these two drivers jointly impact aquatic species. Thus, for the first time, we aimed at investigating the combined effects of increased temperature, pCO2 and the synthetic progestin levonorgestrel on survival, growth, consumption rate and reproduction of the amphipod Gammarus locusta. For that, a full factorial design manipulating temperature [ambient temperature and warming (+4°C)], pCO2 [normocapnia and hypercapnia (Δ pH 0.5 units)] and the progestin levonorgestrel (LNG: L1 - 10ngLL-1 and L2 - 1000ngLL-1, control - no progestin and solvent control - vehicle ethanol (0.01%)) was implemented for 21 days. G.locusta was strongly negatively affected by warming, experiencing higher mortality rates (50-80%) than in any other treatments. Instead, growth rates were significantly affected by interactions of LNG with temperature and pCO2. It was observed, in the short-term (7d) that under ambient temperature (18°C) and hypercapnic conditions (pH 7.6), the LNG presence promoted the amphipod's growth, while in the medium-term (21d) this response was not observed. Relative consumption rates (RCRs), during the first week were higher than in the third week. Furthermore, in the first week, RCRs were negatively affected by higher temperature while in the third week, RCRs were negatively affected by acidification. Furthermore, it was observed a negative effect of higher temperature and acidification on G.locusta fecundity, contrarily to LNG. Concluding, the impact of increased temperature and pCO2 was clearly more adverse for the species than exposure to the synthetic progestin, however, some interactions between the progestin and the climate factors were observed. Thus, in a future scenario of global change, the presence of LNG (and other progestins alike) may modulate to a certain level the effects of climate drivers (and vice-versa) on the gammarids fitness and reproduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.