Abstract
Cotton (Gossypium hirsutum L., cv DPL 5415) plants were grown in naturally lit environment chambers at day/night temperature regimes of 26/18 (T-26/18), 31/23 (T-31/23) and 36/28 °C (T-36/28) and CO2 concentrations of 350 (C-350), 450 (C-450) and 700 μL L-1 (C-700). Net photosynthesis rates, stomatal conductance, transpiration, RuBP carboxylase activity and the foliar contents of starch and sucrose were measured during different growth stages. Net CO2 assimilation rates increased with increasing CO2 and temperature regimes. The enhancement of photosynthesis was from 24 μmol CO2 m-2 s-1 (with C-350 and T-26/18) to 41 μmol m-2 s-1 (with C-700 and T-36/28). Stomatal conductance decreased with increasing CO2 while it increased up to T-31/23 and then declined. The interactive effects of CO2 and temperature resulted in a 30% decrease in transpiration. Although the leaves grown in elevated CO2 had high starch and sucrose concentrations, their content decreased with increasing temperature. Increasing temperature from T-26/18 to 36/28 increased RuBP carboxylase activity in the order of 121, 172 and 190 μmol mg-1 chl h-1 at C-350, C-450 and C-700 respectively. Our data suggest that leaf photosynthesis in cotton benefited more from CO_2 enrichment at warm temperatures than at low growth temperature regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.