Abstract

The projected increase in the pCO2 and temperature level by the end of the 21st century, is expected to influence the life cycle of marine invertebrates. Experiments were carried out with an acorn barnacle, Balanus amphitrite a dominant inter-tidal organism, to investigate the effect of these variables on its larval development and metamorphosis. Four alternate combinations of temperature and pCO2: (1) control (~30°C and ~400μatm); (2) elevated pCO2 (~30°C and ~750μatm); (3) elevated temperature (~34°C and ~400μatm); and (4) synergistic (~34°C and ~750μatm) were tested. Apart from their direct effect, the diet-mediated influence was also evaluated by providing a diatom feed (Chaetoceros calcitrans) that was grown under similar conditions as that of nauplii. In both the direct and diet-mediated effects, irrespective of pCO2 levels, elevated temperature favoured faster naupliar development. However, in the direct effect, the synergistic condition yielded poor quality cyprids (non-feeding, pre settlement larval stage) as evidenced by lower RNA:DNA ratio, that resulted in lower metamorphosis. On the contrary, in the diet-mediated evaluation, the feed grown in the synergistic condition had higher protein content that facilitated faster naupliar development, better quality of cyprids (higher RNA:DNA ratio) and yielded a higher percentage of metamorphosis. The results suggest that future climatic conditions will affect the quality of food consumed by invertebrate larvae, thus influencing their development and metamorphosis. Therefore, future studies evaluating the climate change scenarios to depict the changes in settlement and recruitment of marine invertebrates should be advocated to integrate the changes in the food chain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.