Abstract

Interactive cutting simulation of deformable objects is primarily achieved by modifying the mesh topology of the objects in real time. As cutting proceeds arbitrarily, it results in many possible cases of topological changes that make the design of generic cutting algorithms a tedious bookkeeping task. This paper presents an interactive cutting simulation approach based on mass–spring system. By the analogy of digital design, a systematic method is proposed to trace and manage the topology changes during interactive cutting. The dynamics of deformable objects and the cutting-induced deformation are simulated by the force propagation among the mass-points. In the meantime, adaptive mesh refinements by three processes—redistribution, remeshing and relaxation—are carried out in the process of interactive topology modification. The proposed method is scalable by controlling the extent of localized simulation. It is suitable for cutting simulation in virtual surgery and applications involving the cutting of soft deformable objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.