Abstract

AbstractFollowing the continuous increase in computational power of consumer hardware, interactive virtual environments have been recently enriched with more and more complex deformable objects. However, many physics engines are still very limited in the way they handle interacting rigid and deformable objects. This paper proposes a constraint‐based approach to real‐time simulation of coupled rigid and deformable objects capable of providing two‐way interactions. Similar techniques have seen widespread usage for either rigid or deformable objects, but not for the simultaneous simulation of both. By extending such approaches, we show not only how interaction is possible but also how it can be performed at real‐time rates. We address contact response and also show how to implement typical constraints to enforce limitations in the degrees of freedom and to enhance the dynamical properties of deformable objects. The method is easily integrated into existing physics engines that use similar constraint solvers and is independent on the kind of deformable object paradigm chosen. The provided simulation results show that the method is fast and effective in handling contacts between rigid and deformable objects and in simulating friction and other kinds of constraints. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call