Abstract

We develop an interactive color image segmentation method in this paper. This method makes use of the conception of Markov random fields (MRFs) and D–S evidence theory to obtain segmentation results by considering both likelihood information and priori information under Bayesian framework. The method first uses expectation maximization (EM) algorithm to estimate the parameter of the user input regions, and the Bayesian information criterion (BIC) is used for model selection. Then the beliefs of each pixel are assigned by a predefined scheme. The result is obtained by iteratively fusion of the pixel likelihood information and the pixel contextual information until convergence. The method is initially designed for two-label segmentation, however it can be easily generalized to multi-label segmentation. Experimental results show that the proposed method is comparable to other prevalent interactive image segmentation algorithms in most cases of two-label segmentation task, both qualitatively and quantitatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.