Abstract
Physically based simulation can produce quality motion of plants, but requires an authoring stage to convert plant "polygon soup" triangle meshes to a format suitable for physically based simulation. We give a system that can author complex simulation-ready plants in a manner of minutes. Our system decomposes the plant geometry, establishes a hierarchy, builds and connects simulation meshes, and detects instances. It scales to anatomically realistic geometry of adult plants, is robust to non-manifold input geometry, gaps between branches or leaves, free-flying leaves not connected to any branch, spurious geometry, and plant self-collisions in the input configuration. We demonstrate the results using a FEM model reduction simulator that can compute large-deformation dynamics of complex plants at interactive rates, subject to user forces, gravity or randomized wind. We also provide plant fracture (with pre-specified patterns), inverse kinematics to easily pose plants, as well as interactive design of plant material properties. We authored and simulated over 100 plants from diverse climates and geographic regions, including broadleaf (deciduous) trees and conifers, bushes and flowers. Our largest simulations involve anatomically realistic adult trees with hundreds of branches and over 100,000 leaves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.