Abstract

BackgroundHIV-1 Vpr-mediated G2 cell cycle arrest is dependent on the interaction of Vpr with an E3 ubiquitin ligase that contains damage-specific DNA binding protein 1 (DDB1), Cullin 4A (Cul4A), DDB1 and Cul4-associated factor 1 (DCAF1), and Rbx1. Vpr is thought to associate directly with DCAF1 in the E3 ubiquitin ligase complex although the exact interaction pattern of the proteins in the complex is not completely defined. The Vpr of SIVagm induces G2 arrest of cognate African Green Monkey (AGM) cells but not human cells. The molecular mechanism by which SIVagm Vpr exhibits its species-specific function remained unknown.MethodsPhysical interaction of proteins in the E3 ubiquitin ligase complex was assessed by co-immunoprecipitation followed by western blotting. In addition, co-localization of the proteins in cells was investigated by confocal microscopy. The cell cycle was analyzed by propidium iodide staining and flow cytometry. DNA damage response elicited by Vpr was evaluated by detecting phosphorylation of H2AX, a marker for DNA damage response.ResultsWe show that RNAi knock-down of DCAF1 prevented the co-immunoprecipitation of DDB1 with HIV-1 Vpr while DDB1 knock-down did not influence the binding of Vpr to DCAF1. HIV-1 Vpr mutants with a L64P or a R90K mutation maintained the ability to associate with DCAF1 but did not appear to be in a complex with DDB1. SIVagm Vpr associated with AGM DCAF1 and DDB1 while, in human cells, it binds to human DCAF1 but hardly binds to human DDB1, resulting in the reduced activation of H2AX.ConclusionsThe identification of Vpr mutants which associate with DCAF1 but only poorly with DDB1 suggests that DCAF1 is necessary but the simple binding of Vpr to DCAF1 is not sufficient for the Vpr association with DDB1-containing E3 ligase complex. Vpr may interact both with DCAF1 and DDB1 in the E3 ligase complex. Alternatively, the interaction of Vpr and DCAF1 may induce a conformational change in DCAF1 or Vpr that promotes the interaction with DDB1. The ability of SIVagm Vpr to associate with DDB1, but not DCAF1, can explain the species-specificity of SIVagm Vpr-mediated G2 arrest.

Highlights

  • HIV-1 Vpr-mediated G2 cell cycle arrest is dependent on the interaction of Vpr with an E3 ubiquitin ligase that contains damage-specific DNA binding protein 1 (DDB1), Cullin 4A (Cul4A), DDB1 and Cul4-associated factor 1 (DCAF1), and Rbx1

  • After another two days culture, Vpr was immunoprecipitated with anti-HA MAb and coimmunoprecipitated DCAF1 and DDB1 were detected on an immunoblot

  • The results showed that the DCAF1 and DDB1 siRNAs knocked-down their respective targets about 80% as compared to a control siRNA which had no effect (Figure 1B)

Read more

Summary

Introduction

HIV-1 Vpr-mediated G2 cell cycle arrest is dependent on the interaction of Vpr with an E3 ubiquitin ligase that contains damage-specific DNA binding protein 1 (DDB1), Cullin 4A (Cul4A), DDB1 and Cul4-associated factor 1 (DCAF1), and Rbx. Vpr is related by amino acid sequence to the Vpx accessory protein which is encoded by SIVmac and HIV-2 Both Vpr and Vpx are packaged into virions through an interaction with p6 region of HIV Gag [1,2], most widely accepted feature of Vpr function is its ability to induce G2 cell cycle arrest [20,21]. Vpr induces G2 cell cycle arrest through its association with the E3 ubiquitin ligase CRL4-DCAF1, a complex that consists of the damage-specific DNA binding protein 1 (DDB1), Cullin 4A (Cul4A), the DDB1 and Cul4-associated factor 1 (DCAF1) and Rbx1 [22,23,24,25,26,27,28]. Vpr association with DDB1 is thought to be indirectly mediated by simple binding of Vpr to DCAF1

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.