Abstract

We report on the structure, jamming, and dynamics of blends of self-suspended hairy silica nanoparticles grafted with poly(ethylene glycol) (PEG) and poly(methyl methacrylate) (PMMA). We find that favorable enthalpic attraction between tethered PEG and PMMA chains augment previously reported entropic attractions between tethered polymer chains in self-suspended suspensions to enhance particle-particle correlations, increase jamming, and slow down chain dynamics. As with their single-component counterparts, the hairy SiO2-PEG/SiO2-PMMA nanoparticle blends exhibit soft glassy rheological behavior and both the energy dissipated at yielding and the plateau elastic modulus display strong maxima in the symmetric case. A comparison of the small angle X-ray scattering (SAXS) measurements with theoretical analysis from density functional theory (DFT) reveals that the addition of SiO2-PMMA to a self-suspended SiO2-PEG suspension initially leads to a higher degree of stretching of the corona chains, which produces stronger interdigitation of the tethered chains, enhanced jamming, and slower polymer relaxation than observed in the single-component materials. By means of an analysis of the heat of mixing released upon blending tethered and untethered PEG and PMMA chains, we find that the strong enthalpic attraction between the grafted polymer chains enhances entropic attractive forces produced by the space-filling constraint on tethered ligands in self-suspended suspensions to produce entangled-polymer-like physical properties in polymers with molecular weights below the thresholds normally associated with the transition to an entangled state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.