Abstract

Enterococci are a frequent cause of nosocomial infections and are often found adherent to indwelling catheters. Concern about such device associated infections has increased with the appearance of vancomycin resistant (VR) enterococci. However, the possible influence of vancomycin resistance in the pathogenesis of biomaterial centered infection has not yet been assessed. Using polyethylene terephthalate (PET) disks as model surfaces, the authors evaluated possible differences in the adherence and persistence of vancomycin sensitive (VS) and VR strains of Enterococcus faecium and Enterococcus faecalis on biomaterial surfaces in vitro and in vivo. The results indicate that: 1) as expected, the clearance of free VR and VS organisms after intraperitoneal injection into normal mice is equally efficient. 2) In vitro, VR bacteria are roughly twice as adherent to plasma coated PET surfaces as are VS organisms. 3) However, in vivo persistence of VS organisms preadherent to biomaterial implants is 5- to 10-fold better than that of preadherent VR organisms. The authors now believe that a discrete change in bacterial cell wall composition between VR and VS enterococci may contribute to the substantial differences in bacterial adhesion and survival of adherent organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call