Abstract

Telomeres are DNA–protein complexes at the ends of eukaryotic chromosomes, the integrity of which is essential for chromosome stability. An important telomere binding protein, TTAGGG repeat factor 2 (TRF2), is thought to protect telomere ends by remodeling them into T-loops. We show that TRF2 specifically interacts with telomeric ss/ds DNA junctions and binding is sensitive to the sequence of the 3′, guanine-strand (G-strand) overhang and double-stranded DNA sequence at the junction. Association of TRF2 with DNA junctions hinders cleavage by exonuclease T. TRF2 interactions with the G-strand overhang do not involve the TRF2 DNA binding domain or the linker region. However, mobility shifts and atomic force microscopy show that the previously uncharacterized linker region is involved in DNA-specific, TRF2 oligomerization. We suggest that T-loop formation at telomere ends involves TRF2 binding to the G-strand overhang and oligomerization through both the known TRFH domain and the linker region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.