Abstract

The phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) activates protein kinase C (PKC) and produces an early stimulation of Na+ transport across frog skin. The ionic basis for this stimulation was studied with combined transepithelial and intracellular electrical measurements. In an initial series of experiments, TPA approximately doubled the amiloride-sensitive short-circuit current (ISC), apical Na+ permeability (PapNa), and apical membrane conductance without affecting the basolateral membrane conductance. The apical effects led to a marked depolarization of the short-circuited skin and a small increase in intracellular Na+ concentration. TPAs increase of PapNa was sufficient to explain the stimulation of basolateral Na+ transport when both the voltage and substrate dependence of the pump were taken into account. After the early stimulation, TPA later depressed ISC. Added at this point (congruent to 1-2 h after TPA administration), insulin had no effect on ISC, whereas a partial response to vasopressin was still observed. Measured either early or late after TPA addition, the phorbol ester reduced insulin binding by congruent to 40%. Insofar as 60% of the specific binding is retained, the abolishment of insulin's natriferic response is unlikely to result from the TPA-induced reduction in hormonal binding. The data provide further support for the concept that activation of PKC produces an early stimulation of Na+ transport by increasing apical Na+ permeability, and that part of insulin's natriferic effect may be mediated by PKC activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.