Abstract

Recently available hydrological data from Hukou station at the junction of the Poyang Lake with the Yangtze River along with other data from stations in the Poyang Lake basin have allowed further examination and understanding of the basin effect (basin discharge generated by rainfall) and the Yangtze River blocking effect on variations of the Poyang Lake level and floods at annual to decadal scales. Major results show that the basin effect has played a primary role influencing the level of Poyang Lake and development of severe floods, while the Yangtze River played a complementary role of blocking outflows from the lake. In most cases, only when the basin effect weakened did the river effect become large, a relationship indicating that the river’s blocking effect diminishes when the lake level is high from receiving large amount of basin discharge, albeit a few exceptions to this relationship occurred when river flow also was elevated from receiving large rainfall discharges in upstream areas. Moreover, the basin effect has become stronger in the period 1960–2003 in accordance with the increase of warm season rainfall in the Poyang Lake basin. In particular, large increases of the basin’s rainfall in the 1990s corresponded to the most severe floods (in 1998, 1995, and 1992) of the last 4 decades. The strong increase of warm season rainfall in the Poyang Lake basin in the 1990s is consistent with the recent southward shift of major warm season rain bands in eastern China. Results of this study provide a utility for improving predictions of the Poyang Lake level and floods, which affect a population of about 10 million.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call