Abstract

Transposition of the E. coli bacteriophage Mu requires the phage encoded A and B proteins, the host protein HU and the host replication proteins. The ends of the genome of the phage, on which some of these proteins act, both contain three transposase (A) binding sites. The organization of these binding sites on each end, however, is different. Here we show, using DNase footprinting experiments with purified A protein, that mutant A binding sites, which affect transposition, have decreased affinity for the transposase. Furthermore the transposase binds non-cooperatively to all A binding sites both in the left and right end of Mu. Electron microscopic studies show that the A protein forms specific nucleoprotein structures upon binding to the ends of Mu. The A and B proteins interact with the ends of Mu to generate larger structures than with the A protein alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.