Abstract

Mutations at sites in the H5 region of the Shaker B K+ channel were used to analyze the influence of the pore on N-type inactivation. Single-channel and two-electrode voltage clamp analyses showed that mutations at residues T441 and T442, which are thought to lie at the internal mouth of the pore, produced opposite effects on inactivation: the inactivated state is stabilized by T441S and destabilized by T442S. In addition, an ammonium derivative, hydroxylamine (OH-(NH3)+), appears to bind in the pore region of T441S and further decreases the rate of recovery from N-type inactivation. This effect relies on the presence of the amino-terminal. The effect of hydroxylamine on the T441S mutation of this K+ channel shows several properties analogous to those of local anesthetics on the Na+ channel. These results can be interpreted to suggest that part of the H5 region contributes to the receptor for the inactivation particle and that a hydroxylamine ion trapped near that site can stabilize their interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call