Abstract
ABSTRACT A recent claim that the giant fibre of the hermit crab excites its contralateral motor giant neurone through a chemical rather than an electrical synapse (Stephens, 1986) was re-examined. We found that the reported increased latency (relative to the electrical ipsilateral synapse) was postsynaptic in origin, as was the increased spike ‘jitter’. There was no difference in synaptic latency between the electrical synapse and the supposed chemical one. We did not find a consistent resistance to N-ethylmaleimide (an uncoupler of electrical synapses) by the supposed chemical synapse, but the synapse was resistant to 2 mmol l−1 cadmium, which blocks known chemical synapses in the system. Sub-threshold depolarizing current passed from the presynaptic giant fibre to the postsynaptic contralateral motor giant, and hyperpolarizing current passed antidromically. We conclude that the svnapse is electrical and not chemical in nature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.