Abstract

The regulatory protein of the squid nerve sodium calcium exchanger (ReP1-NCXSQ) is a 15kDa soluble, intracellular protein that regulates the activity of the Na+/Ca2+ exchanger in the squid axon. It is a member of the cellular retinoic acid-binding proteins family and the fatty acid-binding proteins superfamily. It is composed of ten beta strands defining an inner cavity and a domain of two short alpha helix segments. In this work, we studied the binding and orientation of ReP1-NCXSQ in anionic and zwitterionic lipid membranes using molecular dynamics (MD) simulations. Binding to lipid membranes was also measured by filtration binding assay. ReP1-NCXSQ acquired an orientation in the anionic membranes with the positive end of the macrodipole pointing to the lipid membrane. Potential of mean force calculations, in agreement with experimental measurements, showed that the binding to the anionic interfaces in low ionic strength was stronger than the binding to anionic interfaces in high ionic strength or to zwitterionic membranes. The results of MD showed that the electrostatic binding can be mediated not only by defined patches or domains of basic residues but also by a global asymmetric distribution of charges. A combination of dipole–electric field interaction and local interactions determined the orientation of ReP1-NCXSQ in the interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.