Abstract

Interactions of nanofilms containing ethanolamino groups with cobalt(II), nickel(II), copper(II), and zinc(II) ammoniates at the surface of polyvinylchloride plates and with chromium(III) ammoniate in a solution of ammonium chloride were studied. It was found that the groups of the film, together with chloride ions, displace all ammonia molecules from the inner coordination sphere of the metal. The average number of the ethanolamino N atoms of the film participating in formation of the metal ion coordination sphere is 3.35, 3.47, 3.67, 3.42, and 3.37 for Co2+, Ni2+, Cu2+, Zn2+, and Cr3+ complexes, respectively. The average number of chloride ions is 2 for Co2+, Ni2+, Cu2+, and Zn2+ and 3 for Cr3+. The coordination number of the central atoms is 6. The Cr3+ ion forms a coordination sphere composed of three N atoms and three chloride ions and a coordination sphere (charged 1+) made up of four N atoms and two chloride ions, with the third chloride ion being in the outer sphere. The Co2+, Ni2+, and Cu2+ ions form uncharged coordination spheres of two types: (1) with four N atoms and two chloride ions and (2) with three N atoms, two chloride ions, and the O atom of the ethanol hydroxyl group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.