Abstract
Uptake of the water soluble 1,2-dimercaptopropanol (BAL) derivative 2,3-dimercapto-1-sulfonate (DMPS) into human red blood cells was found in vitro and the mode of penetration studied in detail. The compound entered erythrocytes in a concentration dependent manner. In contrast to sealed ghosts where inside and outside concentrations reached the same value, DMPS accumulated in intact erythrocytes. Since no binding of DMPS could be detected, the reason for accumulation was assumed to be a conversion of DMPS into chelates or metabolites which penetrated the membrane in a slower rate. A facilitated transport of DMPS mediated by the anion carrier protein was concluded on the basis of the following similarities with the anion transport: inhibition of [ 14C]DMPS-uptake by N-ethylmaleimide (NEM), tetrathionate (90%), sulfate (50%), 5,5′-dithio bis(2-nitrobenzoic acid) (DTNB) (25%); inhibition of uptake and efflux by 4,4′-diisothiocyano-2,2′-stilbene disulfonate (DIDS) (80%), dipyridamole (55%); temperature dependency (activation energy 24 K cal/mol); pH-dependency (pH optimum about 6.9); counter-transport; activation of uptake by preincubation with DMPS (transmembrane effect).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.