Abstract

Resistance of Plasmodium falciparum to drugs has led to renewed interest of redox-active methylene blue (MB) for which no resistance has been reported so far. Moreover, MB displays unique interactions with glutathione reductase (GR). However, the mechanisms of action/interaction with potential targets of MB are yet to be elucidated. Our physico-biochemical study on MB and relevant hematin-containing targets was performed under quasi-physiological conditions. The water deprotonation of the Fe(III)protoporphyrin dimer, the major building block of β-hematin, was studied. At pH 6, the predominant dimer possesses water coordinated to both metals. Below pH 6, spontaneous precipitation of β-hematin occurred reminiscent of hemozoin biomineralization at pH 5.0-5.5 in the food vacuole of the malarial parasite. MB also forms dimers (K(Dim)=6800 M(-1)) and firmly binds to hematin in a 2:1 hematin:MB sandwich complex (K(D)=3.16 μM). MB bioactivation catalyzed by GR induces efficient methemoglobin(Fe(III)) [metHb(Fe(III))] reduction to hemoglobin(Fe(II)). The reduction rate, mediated by leucomethylene blue (LMB), was determined (k(metHb)(red)=991 M(-1)·s(-1)) in an assay coupled to the GR/reduced form of nicotinamide adenine dinucleotide phosphate system. Our work provides new insights into the understanding of (i) how MB interacts with hematin-containing targets, (ii) other relevant MB properties in corroboration with the distribution of the three major LMB species as a function of pH, and (iii) how this redox-active cycler induces efficient catalytic reduction of metHb(Fe(III)) to hemoglobin(Fe(II)) mediated by oxidoreductases. These physico-biochemical parameters of MB open promising perspectives for the interpretation of the pharmacology and pathophysiology of malaria and possibly new routes for antimalarial drug development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.