Abstract

Soil moisture is a major driving force of plant community succession in restored meadows. Existing studies mainly focus on diversity-productivity relationships. However, studies which determine the effects of soil moisture on the plant community properties in restored meadows are lacking. In this study, we conducted a chronosequence analysis of the interactions between soil water content variation and plant community properties in meadows following passive restoration (3-, 5-, 9-, 14-, 17-, 21-year restoration) of abandoned farmlands on the Sanjiang Plain, China. Results showed that the plant community was characterized by ruderal plants in the initial year of succession, and then by perennial plants such as Calamagrostis angustifolia and Carex spp. in older restored meadows. Similarity of restored community to target site increased across succession time whereas species diversity gradually decreased. Plant height, coverage and biomass increased with restoration time, with plant density being the exception. The community height, coverage and root/shoot ratio were positively related to the water content in the surface soil layer (0–10 cm). Conversely, plant density was significantly and negatively related with soil moisture at 0–10 cm soil depth. Plant diversity (Shannon index, Richness index and evenness) was closely correlated to soil water content at the soil depth of 0–10 cm. Our findings indicate that vegetation of cultivated meadows could be effectively restored by passive restoration. Change of plant species diversity is an especially important response to hydrological recovery in restored meadows on the Sanjiang Plain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call