Abstract

Zeolitic imidazolate frameworks (ZIFs) are a set of nanoporous metal–organic frameworks (MOFs) with tunable porosity and functionality. Among MOFs, they also show relatively good stability with respect to temperature and humidity. These characteristics lead to their possible applications in separation processes. In many practical separation processes, adsorbents are exposed to a variety of molecular species including acid gases. However, there is little knowledge of the effects of such acid gas exposure on the adsorption and separation properties of ZIFs. Here, the stability of a model ZIF material (ZIF-8) under SO2 exposure in dry, humid, and aqueous environments has been investigated in detail. Combined characterization by several techniques (PXRD, N2 physisorption, EDX, XPS, and FTIR) allowed us to track the structural and compositional properties of ZIF-8 before and after SO2 exposure. ZIF-8 is stable after prolonged exposure in dry SO2 and in humid air without SO2. However, exposure to 10–20 ppm conc...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.