Abstract

Density functional theory calculations are used to elucidate the interactions of small platinum clusters (Ptn, n = 1–5) with the TiC(001) surface. The results are analyzed in terms of geometric, energetic, and electronic properties. It is found that a single Pt atom prefers to be adsorbed at the C-top site, while a Pt2 cluster prefers dimerization and a Pt3 cluster forms a linear structure on the TiC(001). As for the Pt4 cluster, the three-dimensional distorted tetrahedral structure and the two-dimensional square structure almost have equal stability. In contrast with the two-dimensional isolated Pt5 cluster, the adsorbed Pt5 cluster prefers a three-dimensional structure on TiC(001). Substantial charge transfer takes place from TiC(001) surface to the adsorbed Ptn clusters, resulting in the negatively charged Ptn clusters. At last, the d-band centers of the absorbed Pt atoms and their implications in the catalytic activity are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.