Abstract
Contemporary characterisation techniques for graphenes are often performed for samples in a dried state or vacuum, which can lead to significant structural changes and difficulty in assessing the actual physical or physicochemical characteristics of graphenes in a colloid state. The interfacial phenomena between water or mixtures (of water with benzene, methane, or HCl) bound to single-layer graphene oxide (SLGO) and multi-layer graphene oxide (MLGO) in different dispersion media (CDCl3, CCl4, CDCl3/DMSO, air) were studied using low-temperature (200–280K) 1H NMR spectroscopy. Use of the NMR cryoporometry method allows determination of the textural characteristics of SLGO and MLGO depending on their hydration degree. It was found that SLGO in diluted suspensions is more agglomerated after freezing-thawing. This effect could be assigned to cryogelation of carbon sheets leading to a decrease in the specific surface area (from 1841 to 533m2/g) representing the area of sheets that are accessible for water that is unfrozen at subzero temperatures. The results obtained show that the cryoporometry method is appropriate for the investigation of the texture of both wetted and suspended graphene oxides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.