Abstract

Silicon (Si) is not classified as an essential element for plants, but numerous studies have demonstrated its beneficial effects in a variety of species and environmental conditions, including low nutrient availability. Application of Si shows the potential to increase nutrient availability in the rhizosphere and root uptake through complex mechanisms, which still remain unclear. Silicon-mediated transcriptional regulation of element transporters for both root acquisition and tissue homeostasis has recently been suggested as an important strategy, varying in detail depending on plant species and nutritional status. Here, we summarize evidence of Si-mediated acquisition, uptake and translocation of nutrients: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), boron (B), chlorine (Cl), and nickel (Ni) under both deficiency and excess conditions. In addition, we discuss interactions of Si-with beneficial elements: aluminum (Al), sodium (Na), and selenium (Se). This review also highlights further research needed to improve understanding of Si-mediated acquisition and utilization of nutrients and vice versa nutrient status-mediated Si acquisition and transport, both processes which are of high importance for agronomic practice (e.g., reduced use of fertilizers and pesticides).

Highlights

  • Silicon (Si) is the second most abundant element in the Earth’s crust, mainly occurring as various silicate minerals in most soils

  • The results of this study suggest that Si accumulated in the shoot suppresses Zn through down-regulation of OsZIP1, the encoding transporter involved in Zn uptake, rather than by directly alleviating symptoms of Zn toxicity as observed in the study of Song et al (2011)

  • Accumulation of Mn as a consequence of Si application was not observed. Considered together, these findings suggest that for plants inadequately supplied with Mn, Si supply plays an indirect role of improving antioxidant performance in mitigating the symptoms of Mn deficiency induced by ROS formation, rather than a direct one of increasing uptake and/or remobilization of Mn

Read more

Summary

Introduction

Silicon (Si) is the second most abundant element (after oxygen) in the Earth’s crust, mainly occurring as various silicate minerals in most soils. Two major mechanisms of Si-mediated alleviation of P deficiency are proposed: (1) increased root uptake and (2) enhanced utilization of P within the plant tissues.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.