Abstract
Polyglycerol dendrimer synthesized from glycerol core (PGLyD) is an interesting reservoir macromolecule for the design of drug delivery systems due to their adequate blood biocompatibility. However, important features as the comprehension of the structural and dynamic characteristics and the interactions of PGLyD with blood proteins receptors remain unresolved. The high affinity and transport of HSA with drugs stimulated the docking simulations utilizing PGLyD as a ligand for the main HSA docking sites IIA and IIIA. HSA and the PGLyD structures were generated with the aid of Autodock Vina and the best conformations were determined by employing molecular docking. The molecular docking results indicate a thermodynamically favorable interaction suggesting a charge transfer complex formation between HSA and PGLyD. The interaction between PGLyD and HSA was investigated by fluorescence and the quenching mechanism of fluorescence of HSA by PGLyD was discussed. The binding constants and the number of binding sites were measured. The values of thermodynamic parameters ΔG, ΔH, and ΔS were calculated at three different temperatures. The experimental and computational results suggest that hydrophobic forces play a major role in stabilizing the HSA–PGLyD complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.