Abstract

We have studied the interactions between plasma gelsolin and actin: firstly the complex formation between both proteins, secondly the effects of gelsolin and its complexes on G-actin polymerization and F-actin fragmentation. Complex formation has been studied by high-performance gel permeation chromatography; plasma gelsolin alone elutes at an Mr of about 77000 and a Stokes radius of 3.7 nm; complex formation occurs in the presence of Ca2+: by chromatography in the presence of EGTA, a binary complex is obtained with an Mr of 134000 and a Stokes radius of 4.7 nm; and by chromatography in the presence of Ca2+, a ternary complex is obtained with an Mr of 173000 and a Stokes radius of 5.2 nm. The binary complex is EGTA-stable. In relation to this stability of the binary complex, the depolymerizing function of gelsolin is not reversed upon chelation of Ca2+. The effects of plasma gelsolin and its complexes on both G-actin polymerization and F-actin fragmentation, and their Ca2+ dependence have been examined by viscometry and electron microscopy. The main conclusions of these studies are the following: the fast processes are the formation of ternary complex, which acts as a heteronucleus for G-actin polymerization, and the severing function of gelsolin, these fast processes are Ca2+-dependent; the slow processes are related to the capping ability of gelsolin or its complexes and are Ca2+-independent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.