Abstract

This study tested the hypothesis that the effects of the opiate antagonist naloxone on GnRH (and LH) secretion is affected by photoperiod length and testosterone (T) concentrations. The effect of infusing naloxone on GnRH and LH pulse patterns was determined in four groups of orchidectomized sheep: long day (LD) photoperiod treated with T, LD without T (LDC), short day photoperiod (SD) with T, SDC ( n = 5–7/group). Hypophyseal-portal and jugular blood samples were collected at 10 min intervals for 4 h before and 4 h during naloxone infusion (1 mg/kg/h). Neither photoperiod nor T affected either mean GnRH or LH whereas naloxone (P < 0.01) increased both. LD photoperiod (P < 0.01), T (P < 0.01) and naloxone (P < 0.01) all increased LH pulse amplitude whereas only naloxone increased GnRH pulse amplitude (P < 0.01). There was an interaction (P < 0.01) between steroid and naloxone on LH, but not GnRH, pulse amplitude. Both LD photoperiod and T increased both LH and GnRH (P < 0.01) interpulse-interval (IPI). Naloxone decreased GnRH IPI (P < 0.01). The LH/GnRH pulse amplitude ratio was (P < 0.02) increased by T—likely a secondary response to the T-induced increase in IPI. These results are interpreted as showing that in the ram the endogenous opiate peptides regulate both GnRH pulse frequency and amplitude, but that their specific role is modulated by photoperiod and T. These results do not support the concept that the opiate peptides are the primary mediators of the negative feedback effects of T.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call