Abstract

Oral bioavailability for antisense oligonucleotides has recently been reported but the mechanistic details are not known. The proposed oral delivery of nucleic acids will, therefore, require an understanding of the membrane binding interactions, cell uptake and transport of oligonucleotides across the human gastro-intestinal epithelium. In this initial study, we report on the cell-surface interactions of oligonucleotides with human intestinal cells. We have used the Caco-2 cell line as an in vitro model of the human intestinal epithelium to investigate the membrane binding interactions of 20-mer phosphodiester (PO) and phosphorothioate (PS) oligonucleotides. The cellular association of both an internally [3H]-labelled and a 5'end [32P]-labelled PS oligonucleotide (3.0% at 0.4 microM extracellular concentration) was similar and was an order of magnitude greater than that of the 5'end [32P]-labelled PO oligonucleotide (0.2%) after 15 minutes incubation in these intestinal cells. The cellular association of PS was highly saturable with association being reduced to 0.9% at 5 microM whereas that of PO was less susceptible to competition (0.2% at 5 microM, 0.1% at 200 microM). Differential temperature-dependence was demonstrated; PS interactions were temperature-independent whereas the cellular association of PO decreased by 75% from 37 degrees C to 17 degrees C. Cell association of oligonucleotides was length and pH-dependent. A decrease in pH from 7.2 to 5.0 resulted in a 2- to 3-fold increase in cell-association for both backbone types. This enhanced association was not due to changes in lipophilicity as the octanol:aqueous buffer distribution coefficients remained constant over this pH range. The ability of NaCl washes to remove surface-bound PS oligonucleotides in a concentration-dependent manner suggests their binding may involve ionic interactions at the cell surface. Cell-surface washing with the proteolytic enzyme, Pronase, removed approximately 50% of the cell-associated oligonucleotide for both backbone types. Binding to surface proteins seems a major pathway for binding and internalization for both oligonucleotide chemistries and appear consistent with receptor (binding protein)-mediated endocytosis. Whether this binding protein-mediated entry of oligonucleotides can result in efficient transepithelial transport, however, requires further study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.