Abstract

The interactions of substrates with succinyl-CoA synthetase were investigated by measuring the enhancement of the longitudinal water proton relaxation rate (PRR) due to Mn(II) to the enzyme substrate complexes. The binding of Mn(II) to the enzyme was investigated by EPR. The effects of phosphorylating the enzyme on its interactions with Mn(II) and substrates were also examined. Mn(II) binds weakly to dephosphosuccinyl-CoA synthetase (E) at approximately four sites with a KD value of 0.14 mM, and the PRR enhancement of the complex, epsilonb, at 24.3 MHZ and 25 degree is 18.8. The phosphoenzyme (E-P) binds Mn(II) more strongly at approximately four sites with a KD value of 0.74 mM, and only a small change in epsilonb to 18.1. Mm ADP binds to E at one or two sites with K2 = 0.5 muM, the values of epsilont for the ternary E-Mn-ADP complex is 17.0. Free ADP binds about 126 times more weakly to the enzyme than does Mn-ADP. PRR titrations indicated that the values of epsilont for the ternary E-Mn-ADP and (E-P)-Mn-ADP complexes are about the same. Mn-ATP binds very weakly or not at all to (E-P)-Mn. Formation of the ternary complexes of CoA with E-Mn or (E-P)-Mn could be followed by small but significant increases in the PRR enhancement. No ternary complex with succinate could be detected since the addition of succinate had no effect on the PRR enhancement. However, a large decrease in enhancement, at least 2-fold, was observed upon addition of both succinate and CoA. An increase in the PRR enhancement was produced by the interaction of succinyl-CoA with the E-Mn complex. Upper limits of the dissociation constants for CoA from the quaternary E-Mn-ADP-succinate-CoA complex and for succinyl-CoA from the quaternary E-Mn-ADP-succinyl-CoA complex are 390 and 560 muM, respectively. The epsilon values for the quaternary and quinary complexes are 6.4 and 3.1, respectively. The successive occupation of substrate binding sites of succinyl-CoA synthetase produces alterations in the molecular dynamics or in the conformation of the active site (or both), which are accompanied by progressive decreases in the values of epsilon. Thus, the physical parameter used in these studies relects the previously observed catalytic properties of the enzyme system inasmuch as the catalytic function of succinyl-CoA synthetase is potentiated by substrate binding, and catalytic avtivity in partial reactions is maximized as binding sites are successively occupied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call