Abstract

Paralytic shellfish toxins (PSTs) are neurotoxins known to block voltage-gated sodium channels in intoxicated animals and humans. Their metabolism in mammalian systems and their effects on other receptors are not as well understood. In this study, we investigated the in vitro metabolism of two classes of PSTs, gonyautoxin 2/3 (GTX2/3) and C1/2 toxins (C1/2), using rat and mouse liver enzyme preparations. We also analyzed the effects of these toxins on several antioxidant and xenobiotic-metabolizing enzymes in mice. These toxins were selected for their prevalence in the coastal waters of Southern China. When the toxins were incubated with liver preparations containing Phase I and Phase II xenobiotic metabolizing enzymes and appropriate co-factors, no transformation of the toxins was detectable. When mice were given sub-lethal doses of GTX2/3, a loss of activity was observed in hepatic ethoxyresorufin- O-deethylase, penthoxyresorufin- O-deethylase, glutathione peroxidase and superoxide dismutase, but not in glutathione S-transferase, catalase and glutathione reductase. Exposure to the same mouse units of C1/2 caused only a slight reduction in the activity of penthoxyresorufin- O-deethylase and glutathione peroxidase. Our results indicated that these toxins may not be metabolized readily in mammals and that they may cause adverse effects other than sodium channel blocking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.