Abstract
Knowledge on noncovalent intermolecular interactions of organic polyethers with amino acids is essential to gain a better understanding on how polymers assemble in organic nanoparticles which are promising for drug delivery and cryoprotection. The main objective of the present study was to determine how polyethers assemble around ionizable amino acids such as histidine. Electrospray mass spectrometry was applied to probe the interactions in model systems consisting of polyethylene glycol PEG-400 or oxyethylated glycerol OEG-5 and amino acid histidine hydrochloride. Molecular dynamics simulation was utilized to visualize the structure of complexes of polyether oligomers with histidine in different charge states. Stable gas-phase clusters composed of polyether oligomers (PEG(n), OEG(n)) with protonated histidine--PEG(n)•His•H(+), OEG(n)•His•H(+), OEG(n)•OEG(m)•His•H(+) and chlorine counterion--PEG(n)•Cl(-), OEG(n)•Cl(-), were observed under electrospray conditions. Molecular dynamics simulation of representative polyether-histidine complexes revealed the stabilization of oligomers by multiple hydrogen and coordination bonds whereby charged groups are wrapped by the polymeric chains. The self-organization of polyether chains around the protonated imidazole group of histidine was revealed. This finding should be considered when modelling a pegylated protein structure and polyether-based organic nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.