Abstract

Previous structural studies on native T5 5' nuclease, a member of the flap endonuclease family of structure-specific nucleases, demonstrated that this enzyme possesses an unusual helical arch mounted on the enzyme's active site. Based on this structure, the protein's surface charge distribution, and biochemical analyses, a model of DNA binding was proposed in which single-stranded DNA threads through the archway. We investigated the kinetic and substrate-binding characteristics of wild-type and mutant nucleases in relation to the proposed model. Five basic residues R33, K215, K241, R172, and R216, are all implicated in binding branched DNA substrates. All these residues except R172 are involved in binding to duplex DNA carrying a 5' overhang. Replacement of either K215 or R216 with a neutral amino acid did not alter kcat appreciably. However, these mutant nucleases displayed significantly increased values for Kd and Km. A comparison of flap endonuclease binding to pseudoY substrates and duplexes with a single-stranded 5' overhang suggests a better model for 5' nuclease-DNA binding. We propose a major revision to the binding model consistent with these biophysical data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.