Abstract

The ability of tetrapyrrolic macrocycles to stabilize unpaired electrons and engage in π-π interactions is essential for many electron-transfer processes in biology and materials engineering. Herein, we demonstrate that the formation of π dimers is recapitulated in complexes of a linear tripyrrolic analogue of naturally occurring pigments derived from heme decomposition. Hexaethyltripyrrindione (H3TD1) coordinates divalent transition metals (i.e., Pd, Cu, Ni) as a stable dianionic radical and was recently described as a robust redox-active ligand. The resulting planar complexes, which feature a delocalized ligand-based electronic spin, are stable at room temperature in air and support ligand-based one-electron processes. We detail the dimerization of neutral tripyrrindione complexes in solution through electron paramagnetic resonance (EPR) and visible absorption spectroscopic methods. Variable-temperature measurements using both EPR and absorption techniques allowed determination of the thermodynamic parameters of π dimerization, which resemble those previously reported for porphyrin radical cations. The inferred electronic structure, featuring coupling of ligand-based electronic spins in the π dimers, is supported by density functional theory (DFT) calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.