Abstract

Culture of rat hepatocytes with etomoxir, an inhibitor of carnitine palmitoyltransferase I (CPT I), for 48 h, resulted in increased carnitine acetyltransferase (CAT) activity (74%), a marked decrease in CPT activity (82%) measured in detergent extracts, and increased activities of glucose-6-phosphate dehydrogenase (227%) and fructose-1,6-bisphosphatase (65%). Changes in CAT and CPT activities were not observed after 4 h culture with etomoxir. When hepatocytes were cultured with etomoxir and benzafibrate (a hypolipidaemic analogue of clofibrate) for 48 h, etomoxir prevented the 5-fold increase in CAT activity caused by bezafibrate, whereas bezafibrate suppressed the increase in glucose-6-phosphate dehydrogenase and fructose-bisphosphatase caused by etomoxir. However, bezafibrate did not prevent the suppression of CPT activity by etomoxir. Etomoxir inhibited palmitate beta-oxidation and ketogenesis after short-term (0-4 h) and long-term (48 h) exposure, but it caused accumulation of triacylglycerol in hepatocytes only after short-term exposure (0-4 h). These effects of etomoxir on fatty acid metabolism and suppression of CPT (after 48 h) were similar in periportal and perivenous hepatocytes, but the increases in CAT and glucose-6-phosphate dehydrogenase activities were higher in periportal than in perivenous cells. The effects of CPT I inhibitors on CAT activity and long-term suppression of CPT activity are probably mediated by independent mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.