Abstract

Pd–Au bimetallic catalysts have shown potential applications in numerous heterogeneous reactions in which hydrogen and CO act as reactants, intermediates, or products. A fundamental understanding of the interplay between coadsorbed H and CO on the Pd–Au surface is necessary for improving the understanding of catalytic performance. In this study, the interactions of hydrogen and CO with Pd/Au(111) model surfaces were investigated by temperature-programmed desorption (TPD) and molecular beam scattering (MBS) experiments, carried out under ultra-high-vacuum conditions. Our results reveal that CO adsorbs competitively on the hydrogen-precovered Pd–Au surface, causing surface H adatoms to diffuse away from stronger-binding sites (e.g., Pd(111)-like islands) to weaker-binding sites (e.g., Pd–Au alloy sites and subsurface), as evidenced by a shift of the H2 desorption feature to lower temperatures in TPD measurements. Additionally, evolution of H2 was observed when a CO molecular beam was impinged onto the H-pre...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.