Abstract

Porous calcium phosphate ceramics are useful bone graft substitutes on account of their osteoconductive properties and lack of toxicity, but they lack osteogenicity and are brittle in nature. Osteogenic properties, and increased biomechanical properties, could be induced by combining them with human bone-forming cell populations. Progress has been hampered both by the lack of a suitable experimental assay of in vivo human bone formation and a suitable in vivo test system with which to study such cells in association with biomaterials. Here, trabecular bone-derived cells and marrow stromal fibroblastic cells from four human donors aged between 14 and 27 y have been cultured in vitro then combined with a porous ceramic within diffusion chambers and implanted into athymic mice. Bone and cartilage formation was found within the chambers primed with cells cultured in the continuous presence of dexamethasone and ascorbate. These tissues were found in close apposition to the ceramic, confirming that the material is biocompatible and bioactive. These findings demonstrate both that appropriately primed human-cell populations can express the fully differentiated osteoblastic phenotype in the diffusion-chamber model, and also that this is a useful system in which to test the interactions of such cell populations with putative biomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.