Abstract

Gelatinous zooplankton (GZ) comprise a taxonomically and functionally diverse group of marine organisms which includes ctenophores, cnidarians and pelagic tunicates, sharing a soft, mostly transparent body texture, a high body water content and a lack of exoskeleton. They range in size from less than a millimetre to nearly 2 m for the cnidarian jellyfish Nemopilema nomurai, and comprise some of the fastest growing metazoans on Earth (Hopcroft et al., 1998), sometimes surpassing crustacean zooplankton in their contribution to secondary production (i.e. in subtropical waters; Jaspers et al., 2009). They feed on a wide range of prey sizes, with predator–prey ratios comparable in some cases to those of baleen whales and krill (Deibel and Lee, 1992), and with prey removal rates which are similar to those of their non-gelatinous competitors (Acuna et al., 2011). In spite of early work pointing to gelatinous zooplankton as a trophic dead end (Verity and Smetacek, 1996), evidence is rapidly accumulating which shows that they may potentially channel energy from the picoplankton-sized, microbial loop organisms up to the higher trophic levels, including fish (Llopiz et al., 2010). However, this pathway is still largely neglected in most food web investigations even though it is now becoming clear that GZ represent a major fraction of the diet of several commercially important fish species such as bluefin tuna (Thunnus thynnus) (Cardona et al., 2012).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call