Abstract

Interactions of DX-619, a novel fluoroquinolone antibacterial, and levofloxacin (LVFX) with the human renal organic cation transporter hOCT2 were studied. The intracellular accumulation of [(14)C]creatinine in stable transfectants of HEK293 cells expressing hOCT2 (hOCT2-HEK293) as well as vector-transfected HEK293 cells (VEC-HEK293) was evaluated in the presence of DX-619 and LVFX at various concentrations. When added extracellularly, both DX-619 and LVFX inhibited the uptake of [(14)C]creatinine (5 microM) by hOCT2-HEK293 cells in a dose-dependent manner. Unlike in hOCT2-HEK293 cells, the uptake in VEC-HEK293 cells was not inhibited by either fluoroquinolone suggesting that hOCT2 was specifically involved in the inhibition. The apparent IC(50) value for the inhibition of [(14)C]creatinine uptake in hOCT2-HEK293 cells was 1.29+/-0.23 microM for DX-619 and 127+/-27 microM for LVFX, indicating DX-619 to be approximately 100-fold more potent than LVFX at inhibiting the transport of [(14)C]creatinine by hOCT2. A Dixon plot revealed that the inhibition by DX-619 of the hOCT2-mediated transport of [(14)C]creatinine was competitive. Fluoroquinolone antibacterials have the ability to inhibit the transport of creatinine by hOCT2, with DX-619 being much more effective than LVFX.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.