Abstract

To quantify the growth behaviour of fatigue cracks growing towards microstructural barriers or elastic obstacles, parametric solutions are obtained for crack-tip opening displacement and plasticity-induced crack closure of a mode I fatigue crack growing towards elastic obstacles. Three common bi-material systems are analysed using the finite element method, in which both constituent materials have identical elastic properties but only the phase that contains the crack can deform plastically. It has been found that under monotonic loading the crack-tip opening displacement decreases as the crack-tip approaches the interface boundary, but reaching a non-zero value when the crack-tip terminates at the boundary. For a fatigue crack growing under constant amplitude loading, the crack-closure stress has been found to increase as the crack grows towards the barrier. Based on these results a mechanistic model is proposed to quantify the influence of stress level on the fatigue threshold of microstructurally small fatigue cracks, with predictions being in close agreement with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.