Abstract

The influence of dihydrochloride fluphenazine (FPh) on the dipalmitoylphosphatidylcholine (DPPC) bilayer structure was investigated using ATR-IR and (31)P NMR methods. The ATR-IR results indicate an increase in conformational disorder in the hydrophobic part compared with pure DPPC liposomes and a decrease in temperature of the chain-melting phase transition in FPh/DPPC liposomes. These effects depended on the concentration of the drug in the DPPC bilayer. The dihydrochloride fluphenazine molecules form H-bonds with the proton-acceptor carbonyl groups of DPPC molecules. At a higher concentration of the drug, the lipid bilayer structure is destroyed, and an isotropic phase is observed using (31)P NMR spectroscopy. The interactions between FPh and the lipid bilayer have a crucial role in MDR (multidrug-resistant) activity of this drug. These results improve one possible strategy of cancer chemoprevention with FPh accompanied by fluidization and destabilization of the model lipid bilayer structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call